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Abstract. We study the dynamics of ferromagnetic spin systems quenched from infinite
temperature to their critical point. We perform an exact analysis of the spherical model in
any dimension D > 2 and numerical simulations on the two-dimensional Ising model. These
systems are shown to be ageing in the long-time regime, i.e. their two-time autocorrelation and
response functions, and associated fluctuation–dissipation ratio, are non-trivial scaling functions
of both time variables. We show in particular that, for 1 � s (waiting time) � t (observation
time), the fluctuation–dissipation ratio possesses a non-trivial limit value X∞, which appears as a
dimensionless amplitude ratio, and is therefore a novel universal characteristic of non-equilibrium
critical dynamics. For the spherical model, we obtain X∞ = 1 − 2/D for 2 < D < 4 and
X∞ = 1

2 for D > 4 (mean-field regime). For the two-dimensional Ising model we measure
X∞ ≈ 0.26 ± 0.01.

1. Introduction

Consider a ferromagnetic system without quenched randomness, evolving from a disordered
initial state, under some dynamics at fixed temperature T with non-conserved order parameter.

In the high-temperature paramagnetic phase (T > Tc), the system relaxes exponentially to
thermal equilibrium. At equilibrium, two-time quantities such as the autocorrelation function
C(t, s) or the response function R(t, s) only depend on the time difference τ = t − s, where s
(waiting time) is smaller than t (observation time) and both quantities are simply related to
each other by the fluctuation–dissipation theorem [1]:

Req(τ ) = − 1

T

dCeq(τ )

dτ
. (1.1)

In the low-temperature phase (T < Tc), the system undergoes phase ordering. In this non-
equilibrium situation,C(t, s) andR(t, s) are non-trivial functions of both time variables, which
only depend on their ratio at late times, i.e. in the self-similar domain growth (or coarsening)
regime [2]. This behaviour is usually referred to as ageing [3]. Moreover, no such simple
relation, such as equation (1.1), holds between the correlation and the response, i.e. R(t, s)
and ∂C(t, s)/∂s are no longer proportional. It is then natural to characterize the distance to
equilibrium of an ageing system by the so-called fluctuation–dissipation ratio [3–5],

X(t, s) = T R(t, s)

∂C(t, s)/∂s
. (1.2)
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In recent years, several works [3–11] have been devoted to the study of the fluctuation–
dissipation ratio for systems exhibiting domain growth, or for ageing systems such as glasses
and spin glasses, showing that in the low-temperature phaseX(t, s) is a non-trivial function of
its two arguments. In particular, for domain-growth systems, analytical and numerical studies
indicate that the limit fluctuation–dissipation ratio,

X∞ = lim
s→∞ lim

t→∞X(t, s) (1.3)

vanishes throughout the low-temperature phase [7–9].
In comparison with the low-temperature case, fewer studies have been devoted to the two-

time properties of non-equilibrium systems quenched from a disordered state to their critical
point.

It is known from field-theoretical methods [12] that for model A (in the classification of
[13]), evolving at T = Tc from a non-equilibrium disordered initial state, C(t, s) and R(t, s)
depend non-trivially on both s and t , for 1 � s ∼ t . These functions are given by the
product of a prefactor, involving powers of s related to the static anomalous dimension of
the magnetization and to the dynamic critical exponent zc, and universal scaling functions of
the ratio x = t/s, falling off algebraically with the exponent λc/zc for large time separations
(1 � s � t) (see equations (3.10) and (3.15) below). The autocorrelation exponent λc,
related to the initial-slip exponent �c [12] by λc = D − zc�c, was introduced independently
by Huse and measured by numerical simulations of the two-dimensional kinetic Ising model
[14]. A number of further studies have been devoted to precise numerical determinations of
the exponent �c and to related matters†.

However, to date, only very little attention has been devoted to the fluctuation–dissipation
ratio X(t, s), for non-equilibrium systems at criticality. (From now on, we will only have in
mind ferromagnetic systems without quenched randomness.) For instance, one may wonder
whether there exists, for a given model, a well defined limit X∞ at T = Tc, different from its
trivial valueX∞ = 0 in the low-temperature phase and to what extentX∞ is universal. Indeed,
a priori, for a system such as a ferromagnet, quenched from infinitely high temperature to its
critical point, the limit fluctuation–dissipation ratio X∞ at T = Tc (if it exists) may take any
value between X∞ = 1 (T > Tc, equilibrium) and X∞ = 0 (T < Tc, domain growth).

In this paper we investigate the non-equilibrium correlation and response functions, and the
associated fluctuation–dissipation ratio, for ferromagnetic models quenched from a disordered
state to their critical point.

We begin our study by an exact analysis of the non-equilibrium critical dynamics of the
spherical model in arbitrary dimension (section 2). The dynamics of the model is described
by means of a Langevin equation, which was first introduced and solved by Cugliandolo and
Dean [6]. Our results provide an illustration of the scaling behaviour of C(t, s) and R(t, s)
just described above. Furthermore, we obtain the explicit expressions of the scaling functions
for C(t, s), R(t, s) and X(t, s). This allows the exact determination of the limit fluctuation–
dissipation ratio X∞.

Though the analysis of the same questions at low temperature has already been addressed
previously by other workers [6]‡, we found it very enlightening to give a self-contained
presentation of the three situations T > Tc, T = Tc and T < Tc in parallel, all the more
as it does not imply significant lengthening of this paper since the formalism is common to the
three cases.

† For recent reviews, with emphasis on numerical works, see [15].
‡ A thorough scaling analysis of the non-equilibrium dynamics of the ferromagnetic spherical model in the low-
temperature phase can be found in [11].
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Let us also mention that [12] contains some results on the critical dynamics of the spherical
model, obtained by taking the n → ∞ limit of the O(n) model, that we shall comment upon
where appropriate.

We then turn to a scaling analysis of C(t, s), R(t, s) and X(t, s) for the generic case of
a ferromagnetic system quenched, respectively, to a temperature T < Tc and to its critical
point (section 3). Again we found it clarifying to put these two situations in perspective, the
main focus being, however, on the fluctuation–dissipation ratio X(t, s) at criticality, which is
original to this paper.

We finally illustrate this generic case by numerical simulations on the two-dimensional
Ising model at its critical temperature. Though again the emphasis is put on the fluctuation–
dissipation ratioX(t, s), let us point out that, to the best of our knowledge, this paper provides
the first quantitative determination of the scaling functions for the two-time correlation and
response functions of the two-dimensional Ising model at criticality.

Eventually, one salient outcome of this paper is the realization that the limit fluctuation–
dissipation ratio X∞ is a novel universal characteristic of critical dynamics, intrinsically
related to non-equilibrium initial situations. This confirms the claim made in [16], where
the fluctuation–dissipation ratio X(t, s) for the Glauber–Ising chain was determined, leading
to the limit X∞ = 1

2 (see also [17]).
We finally mention some other cases of critical systems we are aware of, for which the

fluctuation–dissipation ratio has been considered. These are the simple models of [4] (random
walk, free Gaussian field and two-dimensional X–Y model at zero temperature) which share
the limit fluctuation–dissipation ratio X∞ = 1

2 and the backgammon model, a mean-field
model for which Tc = 0, where it has been shown that X∞ = 1, up to a large logarithmic
correction, for both energy fluctuations and density fluctuations [18, 19].

2. The spherical model

2.1. Langevin dynamics

The ferromagnetic spherical model was introduced by Berlin and Kac [20] as an attempt to
simplify the Ising model. It is known to be equivalent to the n → ∞ limit of the O(n)
Heisenberg model [21]. The statics [20, 22] and the dynamics [2, 6, 11, 12] of this model can
be investigated exactly in any dimension.

Consider a lattice of points of arbitrary dimension D, chosen to be hypercubic for
simplicity, with unit lattice spacing. The spins Sx, situated at the lattice vertices x, are real
variables subject to the constraint∑

x

S2
x = N (2.1)

where N is the number of spins in the system. The Hamiltonian of the model reads

H = −
∑
(x,y)

SxSy (2.2)

where the sum runs over pairs of neighbouring sites.
Throughout the following, we assume that the system is homogeneous, i.e. invariant under

spatial translations. This holds for a finite sample with periodic boundary conditions and (at
least formally) for the infinite lattice. We also assume that the initial state of the system at
t = 0 is the infinite-temperature equilibrium state. This state is fully disordered, in the sense
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that spins are uncorrelated. The dynamics of the system is given by the stochastic differential
Langevin equation [6],

dSx

dt
=

∑
y(x)

Sy − λ(t) Sx + ηx(t). (2.3)

The first term, where y(x) denotes the 2D first neighbours of the site x, is equal to the gradient
−∂H/∂Sx, while λ(t) is a Lagrange multiplier ensuring the constraint (2.1), which we choose
to parametrize as

λ(t) = 2D + z(t) (2.4)

and ηx(t) is a Gaussian white noise with correlation

〈ηx(t) ηy(t
′)〉 = 2T δx,y δ(t − t ′). (2.5)

Equation (2.3) can be solved in Fourier space. Defining the spatial Fourier transform by
the formulae

f F(q) =
∑

x

fx e−iq·x fx =
∫

dDq

(2π)D
f F(q) eiq·x (2.6)

where ∫
dDq

(2π)D
=

∫ π

−π

dq1

2π
· · ·

∫ π

−π

dqD
2π

(2.7)

is the normalized integral over the first Brillouin zone, we obtain

∂SF(q, t)

∂t
= −[ω(q) + z(t)]SF(q, t) + ηF(q, t) (2.8)

where

ω(q) = 2
D∑
a=1

(1 − cos qa) ≈
q→0

q2 (2.9)

and

〈ηF(q, t) ηF(q′, t ′)〉 = 2T (2π)D δD(q + q′) δ(t − t ′). (2.10)

The solution to equation (2.8) reads

SF(q, t) = e−ω(q)t−Z(t)
(
SF(q, t = 0) +

∫ t

0
eω(q)t1+Z(t1)ηF(q, t1) dt1

)
(2.11)

with

Z(t) =
∫ t

0
z(t1) dt1. (2.12)
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2.2. Equal-time correlation function

Our first goal is to compute the equal-time correlation function

Cx−y(t) = 〈Sx(t) Sy(t)〉 (2.13)

which is a function of the separation x−y, by translational invariance. We have, in particular,

C0(t) = 〈Sx(t)
2〉 = 1 (2.14)

because of the spherical constraint (2.1) and

Cx(t = 0) = δx,0 (2.15)

reflecting the absence of correlations in the initial state. In equation (2.13), the brackets denote
the average over the ensemble of infinite-temperature initial configurations and over the thermal
histories (realizations of the noise).

In Fourier space the equal-time correlation function is defined by

〈SF(q, t) SF(q′, t)〉 = (2π)D δD(q + q′) CF(q, t). (2.16)

Using expression (2.11), averaging it over the white noise ηF(q, t) with variance given by
equation (2.10) and imposing the condition

CF(q, t = 0) = 1 (2.17)

implied by equation (2.15), we obtain

CF(q, t) = e−2ω(q)t−2Z(t)

(
1 + 2T

∫ t

0
e2ω(q)t1+2Z(t1) dt1

)
. (2.18)

At this point, we are naturally led to introduce two functions, f (t) and g(T , t), which
play a central role in the following developments.

The function f (t) is given explicitly by

f (t) =
∫

dDq

(2π)D
e−2ω(q)t = (

e−4t I0(4t)
)D ≈

t→∞ (8πt)−D/2 (2.19)

where

I0(z) =
∫

dq

2π
ez cos q ≈

z→∞ (2πz)−1/2 ez (2.20)

is the modified Bessel function.
The function

g(T , t) = e2Z(t) (2.21)

is related to f (t) by the constraint (2.14), namely∫
dDq

(2π)D
CF(q, t) = 1

g(T , t)

(
f (t) + 2T

∫ t

0
f (t − t1)g(T , t1) dt1

)
= 1 (2.22)

which yields a linear Volterra integral equation for g(T , t) [6], namely

g(T , t) = f (t) + 2T
∫ t

0
f (t − t1)g(T , t1) dt1. (2.23)

This equation can be solved using temporal Laplace transforms, denoted by

f L(p) =
∫ ∞

0
f (t) e−pt dt. (2.24)
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We obtain

gL(T , p) = f L(p)

1 − 2Tf L(p)
(2.25)

with

f L(p) =
∫

dDq

(2π)D
1

p + 2ω(q)
. (2.26)

The dependence of gL(T , p) on temperature appears explicitly in equation (2.25).
We now present an analysis of the long-time behaviour of the function g(T , t), considering

successively the paramagnetic phase (T > Tc), the ferromagnetic phase (T < Tc) and the
critical point (T = Tc). To do so, we shall utilize equation (2.25) extensively. We therefore
investigate first the function f L(p), as given in equation (2.26). This function has no closed-
form expression, except in one and two dimensions:

D = 1: f L(p) = 1√
p(p + 8)

D = 2: f L(p) = 2

π |p + 8| K

(
8

|p + 8|
) (2.27)

where K is the complete elliptic integral. Together with the definition (2.9), equation (2.26)
implies that f L(p) is analytic in the complex p-plane cut along the real interval [−8D, 0]. The
behaviour of f L(p) in the vicinity of the branch point at p = 0 can be analysed heuristically as
follows. The asymptotic behaviour of f (t) given in equation (2.19) suggests that its Laplace
transform has a universal singular part:

f L
sg(p) ≈

p→0
(8π)−D/2$(1 −D/2)pD/2−1 (2.28)

while there also exists a regular part of the form

f L
reg(p) = A1 − A2p + A3p

2 + · · · (2.29)

where

Ak =
∫

dDq

(2π)D
1

(2ω(q))k
(2.30)

are non-universal (lattice-dependent) numbers, given in terms of integrals which are convergent
forD−2k > 0. For instance,A1 only exists forD > 2 and so on. Equations (2.28) and (2.29)
jointly determine the small-p behaviour of f L(p), as a function of the dimensionality D:

f L(p) ≈



(8π)−D/2$(1 −D/2)p−(1−D/2) D < 2

A1 − (8π)−D/2|$(1 −D/2)|pD/2−1 2 < D < 4

A1 − A2p D > 4.

(2.31)

These expressions can be justified by more systematic studies (see, e.g., [23]): f L(p) possesses
an asymptotic expansion involving only powers of the form pn and pD/2−1+n, for n = 0, 1, . . .
WheneverD = 2, 4, . . . is an even integer, the two sequences of exponents merge, giving rise
to logarithmic corrections, which shall be discarded throughout the following.

In low enough dimension (D < 2), f L(p) diverges as p → 0. Consequently, for any
finite temperature, gL(T , p) has a pole at some positive value of p, denoted by 1/τeq, away
from the cut of f L(p). Hence

g(T , t) ∼
t→∞ et/τeq (2.32)
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and therefore, as further analysed below, the system relaxes exponentially fast to equilibrium,
with a finite relaxation time τeq. The latter diverges as the zero-temperature phase transition
is approached, as

τeq ≈
T→0

(
2(8π)−D/2$(1 −D/2)T

)−2/(2−D)
. (2.33)

In high enough dimension (D > 2), f L(p = 0) = A1 is finite, so that the pole of gL(T , p)

hits the cut of f L(p) at p = 0 at a finite critical temperature

Tc = 1

2A1
=

(∫
dDq

(2π)D
1

ω(q)

)−1

. (2.34)

As T → T +
c , the relaxation time τeq diverges according to

τeq ≈
T→T +

c




(
2(8π)−D/2|$(1 −D/2)|T 2

c

T − Tc

)2/(D−2)

2 < D < 4

2A2T
2

c

T − Tc
D > 4.

(2.35)

Note that these equations can be recast into the form τeq ∼ (T −Tc)
−νzc , where ν is the critical

exponent of the correlation length, equal to 1/(D − 2) for 2 < D < 4 and to 1
2 for D > 4

[22], while zc is the dynamic critical exponent, which is equal to 2 in the present case†.
We now discuss the asymptotic behaviour of the function g(T , t) according to temperature.

Throughout the following, we will assume that D > 2, so that the model has a ferromagnetic
transition at a finite Tc, given by equation (2.34).

• In the paramagnetic phase (T > Tc), g(T , t) still grows exponentially, according to
equation (2.32).

• In the ferromagnetic phase (T < Tc), a careful analysis of equation (2.25) yields

g(T , t) ≈
t→∞

f (t)

M4
eq

≈ (8πt)−D/2

M4
eq

(2.36)

where the spontaneous magnetization Meq is given by [22]

M2
eq = 1 − T

Tc
. (2.37)

• At the critical point (T = Tc), we obtain

g(Tc, t) ≈
t→∞



(D − 2)(8π)D/2−1 sin[(D − 2)π/2]

t−(2−D/2)

T 2
c

2 < D < 4

1

4A2T 2
c

D > 4.

(2.38)

Finally, equations (2.25), (2.26), (2.31) and (2.34) yield the following identities:∫ ∞

0
f (t) dt = 1

2Tc∫ ∞

0
f (t) e−t/τeq dt = 1

2T
(T > Tc)∫ ∞

0
g(T , t) dt = 1

2TcM2
eq

(T < Tc).

(2.39)

† A summary of the values of static and dynamical exponents appearing in this work is given in table 1.
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We are now in a position to discuss the temporal behaviour of the equal-time correlation
function in the different phases. Its expression (2.18) in Fourier space reads

CF(q, t) = e−2ω(q)t

g(T , t)

(
1 + 2T

∫ t

0
e2ω(q)t1g(T , t1) dt1

)
(2.40)

using the definition (2.21) of g(T , t). We shall consider, in particular, the dynamical
susceptibility

χ(t) = 1

T

∑
x

〈S0(t) Sx(t)〉 = CF(q = 0, t)
T

(2.41)

for which equation (2.40) yields

χ(t) = 1

g(T , t)

(
1

T
+ 2

∫ t

0
g(T , t1) dt1

)
. (2.42)

The asymptotic expressions (2.32), (2.36) and (2.38) of g(T , t) lead to the following
predictions.

• In the paramagnetic phase (T > Tc), the correlation function converges exponentially fast
to its equilibrium value, which has the Ornstein–Zernike form

CF
eq(q) = T

ω(q) + ξ−2
eq

(2.43)

where the equilibrium correlation length ξeq is given by

ξ 2
eq = 2τeq. (2.44)

The corresponding value of the equilibrium susceptibility is χeq = ξ 2
eq. Equation (2.43)

implies an exponential and isotropic fall-off of correlations, of the form Cx,eq ∼ e−|x|/ξeq ,
at large distances and for ξeq large, i.e. T close enough to Tc.

• In the ferromagnetic phase (T < Tc), using the third of the identities (2.39), we obtain a
scaling form for the correlation function, namely

CF(q, t) ≈ M2
eq (8πt)

D/2 e−2q2t (2.45)

or equivalently,

Cx(t) ≈ M2
eq e−x2/(8t) (2.46)

in the regime where x is large (i.e. q is small) and t is large. Both the Gaussian profile of
the correlation function and its scaling law involving one single diverging length scale

L(t) ∼ t1/2 (2.47)

reflect the diffusive nature of the coarsening process. The growing length L(t) can be
interpreted as the characteristic size of an ordered domain. The dynamical susceptibility,

χ(t) ≈ M2
eq

T
(8πt)D/2 (2.48)

grows as χ(t) ∼ L(t)D , or otherwise as the volume explored by a diffusive process.
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• At the critical point (T = Tc), the equilibrium correlation function reads

CF
eq(q) ≈ Tc

q2
(2.49)

i.e.

Cx,eq ≈ $(D/2 − 1)

4πD/2
Tc

|x|D−2
. (2.50)

These limiting expressions are reached according to scaling laws of the form

CF(q, t) ≈ CF
eq(q),(q

2t)

Cx(t) ≈ Cx,eq -(x
2/t)

(2.51)

with

2 < D < 4:



,(x) = 2x

∫ 1

0
e−2x(1−z) zD/2−2 dz

-(y) = e−y/8

D > 4:



,(x) = 1 − e−2x

-(y) = 1

$(D/2 − 1)

∫ ∞

y/8
e−z zD/2−2 dz.

(2.52)

The second expression of equation (2.51) has the general scaling form for the equal-time
correlation function (see equation (3.9)), with the known value of the static exponent of
correlations η = 0 for the spherical model [22], and with zc = 2, already found above.
The expression of ,(x) in the first line of equation (2.52) (2 < D < 4) was already
derived in [12].
The dynamical susceptibility grows linearly with time, as χ(t) ≈ ,′(0) t , i.e.

χ(t) ≈



4

D − 2
t 2 < D < 4

2t D > 4.
(2.53)

2.3. Two-time correlation function

We now consider the two-time correlation function

Cx−y(t, s) = 〈Sx(t) Sy(s)〉 (2.54)

with 0 � s (waiting time) � t (observation time). Its Fourier transform CF(q, t, s) is defined
as in equation (2.16). Using equation (2.11), we obtain

CF(q, t, s) = e−ω(q)(t+s)
√
g(T , t)g(T , s)

(
1 + 2T

∫ s

0
e2ω(q)t1g(T , t1) dt1

)
(2.55)

or otherwise

CF(q, t, s) = CF(q, s) e−ω(q)(t−s)
√
g(T , s)

g(T , t)
(2.56)

using expression (2.40) for CF(q, s).
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In the following, we shall be mostly interested in the two-time autocorrelation function

C(t, s) ≡ C0(t, s) = 〈Sx(t) Sx(s)〉 =
∫

dDq

(2π)D
CF(q, t, s) (2.57)

for which equation (2.55) yields [6]

C(t, s) = 1√
g(T , t)g(T , s)

[
f

(
t + s

2

)
+ 2T

∫ s

0
f

(
t + s

2
− t1

)
g(T , t1) dt1

]
. (2.58)

The autocorrelation with the initial state assumes the simpler form

C(t, s = 0) = f (t/2)√
g(T , t)

. (2.59)

The asymptotic expressions (2.19), (2.32), (2.36) and (2.38) of the functions f (t) and
g(T , t) lead to the following predictions.

• In the paramagnetic phase (T > Tc), as s → ∞ with τ = t−s fixed, the system converges
to its equilibrium state, where the correlation function only depends on τ :

C(s + τ, s) →
s→∞ Ceq(τ ) = T

∫ ∞

τ

f (τ1/2) e−τ1/(2τeq) dτ1. (2.60)

This equilibrium correlation function decreases exponentially to zero as e−τ/(2τeq) when
τ → ∞. The initial valueCeq(0) = 1 is ensured by the second identity of equation (2.39).

• In the ferromagnetic phase (T < Tc), two regimes need to be considered. In the first
regime (s → ∞ and τ fixed, i.e. 1 ∼ τ � s), using again the identities (2.39), we obtain

C(s + τ, s) ≈ M2
eq + (1 −M2

eq)Ceq,c(τ ) (2.61)

where we have set

Ceq,c(τ ) = Tc

∫ ∞

τ

f (τ1/2) dτ1. (2.62)

This function, which corresponds to the T → Tc limit of equation (2.60), decreases only
algebraically to zero when τ → ∞, as

Ceq,c(τ ) ≈
τ→∞

2(4π)−D/2

D − 2
Tc τ

−(D/2−1) (2.63)

as implied by equation (2.19). The first identity of (2.39) ensures that Ceq,c(0) = 1.
In the second regime, where s and t are simultaneously large (i.e. 1 � s ∼ τ ), with
arbitrary ratio

x = t

s
= 1 +

τ

s
� 1 (2.64)

the correlation function obeys a scaling law of the form [11]

C(t, s) ≈ M2
eq

(
4ts

(t + s)2

)D/4
≈ M2

eq

(
4x

(x + 1)2

)D/4
. (2.65)

When x � 1, this expression behaves as

C(t, s) ≈ AM2
eq x

−λ/2 (2.66)
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which can be recast into

C(t, s) ∼ M2
eq

(
L(t)

L(s)

)−λ
(2.67)

where L(t) is the length scale defined in equation (2.47), and λ is the autocorrelation
exponent (see section 3), which is equal toD/2 in the present case, in agreement with the
result found in the n → ∞ limit of the O(n)model (see [2], p 386 and references therein).
Between these two regimes, the correlation function takes a plateau value

qEA = lim
τ→∞ lim

s→∞C(s + τ, s) = M2
eq = 1 − T

Tc
(2.68)

known as the Edwards–Anderson order parameter (see, e.g., [24]).
Hereafter we shall refer to the first regime (1 ∼ τ � s) as the stationary regime and to
the second one (1 � s ∼ τ ) as the scaling (or ageing) regime. In the former, the system
becomes stationary, though without reaching thermal equilibrium, because the system is
coarsening. In the latter regime, as mentioned above, the system is ageing. It is possible
to match these two kinds of behaviour, corresponding to equations (2.61) and (2.65),
respectively, into a single expression:

C(t = s + τ, s) ≈ (1 −M2
eq)Ceq,c(τ ) +M2

eq

(
4ts

(t + s)2

)D/4
(2.69)

which is the sum of a term corresponding to the stationary contribution and a term
corresponding to the ageing one. Let us finally recall that, in the context of glassy
dynamics, in a low-temperature phase, the first regime, where C(t, s) > qEA, is usually
referred to as the β regime, while the second one, where C(t, s) < qEA, is referred to as
the α regime [3].

• At the critical point (T = Tc), the same two regimes are to be considered. However, their
physical interpretation is slightly different, since the order parameter Meq vanishes and
symmetry between the phases is restored.
In the first regime (1 ∼ τ � s), the system again becomes stationary, the autocorrelation
function behaving as the T → Tc limit of equation (2.60), that is

C(s + τ, s) →
s→∞ Ceq,c(τ ) (2.70)

which decreases algebraically to zero when τ → ∞ (cf equation (2.63)). In the second
regime (1 � s ∼ τ ), the correlation function obeys a scaling law of the form

C(t, s) ≈ Tc s
−(D/2−1) F (x) (2.71)

where the scaling function F(x) reads

F(x) =




4(4π)−D/2

(D − 2)(x + 1)
x1−D/4(x − 1)1−D/2 2 < D < 4

2(4π)−D/2

D − 2

(
(x − 1)1−D/2 − (x + 1)1−D/2) D > 4.

(2.72)

In this regime the system is still ageing, in the sense thatC(t, s) bears a dependence in both
time variables. However, the scaling of expression (2.71) is different from that found in
the low-temperature phase (see equation (2.65)), which depends on the ratio x = t/s only.
The presence in equation (2.71) of an additional s dependence through the factor s−(D/2−1)

can be interpreted as coming from the anomalous dimension of the field Sx at Tc. In the
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Table 1. Static and dynamical exponents of the ferromagnetic spherical model and of the two-
dimensional Ising model. First group: usual static critical exponents η, β and ν (equilibrium).
Second group: zero-temperature dynamical exponents z and λ (coarsening below Tc). Third
group: dynamic critical exponents zc, λc and �c (non-equilibrium critical dynamics).

Exponent Spherical (2 < D < 4) Spherical (D > 4) Ising (D = 2)

η 0 0 1
4

β 1
2

1
2

1
8

ν 1/(D − 2) 1
2 1

z 2 2 2

λ D/2 D/2 ≈1.25

zc 2 2 ≈2.17

λc 3D/2 − 2 D ≈1.59

�c 1 −D/4 0 ≈0.19

critical region one has indeed Meq ∼ |T − Tc|β ∼ ξ
−β/ν
eq . Replacing ξeq by s1/zc implies

the replacement of M2
eq by s−2β/νzc ∼ s−(D−2+η)/zc . With η = 0 and zc = 2, the factor of

s−(D/2−1) is thus recovered. Note that the static hyperscaling relation 2β/ν = D − 2 + η
holds for D < 4, while it is violated for D > 4 (see table 1).
Two limiting regimes are of interest. First, for x → 1, i.e. 1 � τ � s, equation (2.71)
matches equation (2.63). Second, for x � 1, i.e. 1 � s � t , one obtains

F(x) ≈ B x−λc/zc (2.73)

where the autocorrelation exponent λc (see section 3.2) is equal to 3D/2−2 if 2 < D < 4
and to D above four dimensions, in agreement with the result found in [12].
We also quote for later reference the scaling law of the derivative

∂C(t, s)

∂s
≈ Tc s

−D/2 F1(x) (2.74)

with

F1(x) = −D − 2

2
F(x)− x F ′(x) (2.75)

i.e.

F1(x) =



(4π)−D/2

(D − 2)(x + 1)2 + 2(x − 1)2

(D − 2)(x + 1)2
x1−D/4(x − 1)−D/2 2 < D < 4

(4π)−D/2
(
(x − 1)−D/2 + (x + 1)−D/2

)
D > 4.

(2.76)

2.4. Two-time response function

Suppose now that the system is subjected to a small magnetic field Hx(t), depending on the
site x and on time t � 0 in an arbitrary fashion. This amounts to adding to the ferromagnetic
Hamiltonian (2.2) a time-dependent perturbation of the form

δH(t) = −
∑

x

Hx(t) Sx(t). (2.77)
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The dynamics of the model is now given by the modified Langevin equation

dSx

dt
=

∑
y(x)

Sy − λ(t) Sx +Hx(t) + ηx(t). (2.78)

Causality and invariance under spatial translations imply that we have, to first order in the
magnetic field Hx(t),

〈Sx(t)〉 =
∫ t

0
ds

∑
y

Rx−y(t, s)Hy(s) + · · · . (2.79)

This formula defines the two-time response function Rx−y(t, s) of the model. A more formal
definition reads

Rx−y(t, s) = δ〈Sx(t)〉
δHy(s)

∣∣∣∣
{Hx(t)=0}

. (2.80)

The solution to equation (2.78) reads, in Fourier space,

SF(q, t) = e−ω(q)t−Z(t)
(
SF(q, t = 0) +

∫ t

0
eω(q)t1+Z(t1)

[
H F(q, t1) + ηF(q, t1)

]
dt1

)
. (2.81)

It can be checked that the Lagrange function λ(t) and hence z(t) and Z(t), remain unchanged,
to first order in the magnetic field. Consequently, the two-time response function reads, in
Fourier space,

RF(q, t, s) = δ〈SF(q, t)〉
δH F(q, s)

∣∣∣∣
{Hx(t)=0}

= e−ω(q)(t−s)
√
g(T , s)

g(T , t)
(2.82)

(cf equation (2.56)). In the following, we shall be mostly interested in the diagonal component
of the response function, corresponding to coincident points:

R(t, s) ≡ R0(t, s) = δ〈Sx(t)〉
δHx(s)

∣∣∣∣
{Hx(t)=0}

=
∫

dDq

(2π)D
RF(q, t, s). (2.83)

With the notation (2.19), (2.21), equation (2.82) yields [6]

R(t, s) = f

(
t − s

2

) √
g(T , s)

g(T , t)
. (2.84)

The response function at zero waiting time assumes the simpler form (cf equation (2.59))

R(t, s = 0) = C(t, s = 0) = f (t/2)√
g(T , t)

. (2.85)

The asymptotic expressions (2.19), (2.32), (2.36) and (2.38) of F(t) and g(T , t) lead to
the following predictions.

• In the paramagnetic phase (T > Tc), at equilibrium, the response function only depends
on τ , according to

Req(τ ) = f (τ/2) e−τ/(2τeq). (2.86)

Moreover, it is related to the equilibrium correlation function Ceq(τ ) of equation (2.60)
by the fluctuation–dissipation theorem (1.1), as it should.
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• In the ferromagnetic phase (T < Tc), the two regimes defined in the previous section for
the case of the autocorrelation function are still to be considered. In the stationary regime
(1 ∼ τ � s), the response function behaves as the T → Tc limit of equation (2.86),
namely

Req,c(τ ) = f (τ/2) = − 1

Tc

dCeq,c(τ )

dτ
(2.87)

so that the fluctuation–dissipation theorem is valid.
On the contrary, in the scaling regime (1 � s ∼ t), the response function has the form
[11]

R(t, s) ≈ (4π(t − s))−D/2(t/s)D/4 = (4πs)−D/2 (x − 1)−D/2xD/4 (2.88)

which, when compared with the corresponding expression (2.65) for the autocorrelation
function, demonstrates the violation of the fluctuation–dissipation theorem (see
section 2.5).

• At the critical point (T = Tc), in the stationary regime (1 ∼ τ � s), the response function
still behaves as in equation (2.87), so that the fluctuation–dissipation theorem still holds.
In the scaling regime (1 � s ∼ t), the response function obeys a scaling law of the form

R(t, s) ≈ s−D/2 F2(x) (2.89)

where the scaling function F2(x) reads

F2(x) =
{
(4π)−D/2x1−D/4(x − 1)−D/2 2 < D < 4

(4π)−D/2(x − 1)−D/2 D > 4.
(2.90)

Again two limiting regimes are of interest. For x → 1, the scaling result (2.90) matches
equation (2.87). For x � 1, one finds the same power-law fall-off for the functions F(x),
F1(x) and F2(x), that is

F(x) ∼ F1(x) ∼ F2(x) ∼ x−λc/zc (2.91)

(see sections 2.5 and 3).

2.5. Fluctuation–dissipation ratio

As already mentioned in the introduction, the violation of the fluctuation–dissipation
theorem (1.1) out of thermal equilibrium can be characterized by the fluctuation–dissipation
ratio X(t, s), defined in equation (1.2). In the case of the spherical model, the results derived
so far yield at once the following predictions.

• In the paramagnetic phase (T > Tc), the system converges to an equilibrium state, where
the fluctuation–dissipation theorem holds. In other words, the fluctuation–dissipation ratio
converges toward its equilibrium value

Xeq = 1. (2.92)

• In the ferromagnetic phase (T < Tc), the fluctuation–dissipation theorem (1.1) is only
valid in the stationary regime (1 ∼ τ � s). In contrast, in the scaling regime (1 � s ∼ τ ),
the results (2.65) and (2.88) imply that the fluctuation–dissipation ratio falls off as [11]

X(t, s) ≈ (8π)−D/2

D

4T

M2
eq

(
x + 1

x − 1

)D/2+1

s−(D/2−1). (2.93)

In particular, the limit fluctuation–dissipation ratio introduced in equation (1.3) reads

X∞ = 0. (2.94)
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• At the critical point (T = Tc), the scaling laws (2.74) and (2.89) imply that the fluctuation–
dissipation ratio X(t, s) becomes asymptotically a smooth function of the time ratio
x = t/s:

X(t, s) ≈
t,s→∞ X (x) = F2(x)

F1(x)
(2.95)

i.e. explicitly,

X (x) =




1

1 + 2/(D − 2) ((x − 1)/(x + 1))2
2 < D < 4

1

1 + ((x − 1)/(x + 1))D/2
D > 4.

(2.96)

The scaling law (2.95) interpolates between the equilibrium behaviour

X (x) →
x→1

Xeq = 1 (2.97)

in the stationary regime of relatively short time differences and a non-trivial limit value

X (x) →
x→∞ X∞ (2.98)

at large time differences, given by

X∞ =
{

1 −D/2 2 < D < 4
1
2 D > 4.

(2.99)

Further comments on the scaling behaviour of the fluctuation–dissipation ratio will be
made in section 3.2.

3. The generic situation

3.1. Ageing below Tc

Let us first briefly sketch the description of the dynamical behaviour of a ferromagnetic system
quenched from a disordered initial state to a temperature T < Tc [2, 6, 8, 9, 25].

In the scaling regime (1 � s ∼ t), the autocorrelation C(t, s) is expected to be a function
of the ratio L(t)/L(s) only, where the length scale L(t) ∼ t1/z is the characteristic size of an
ordered domain and z is the growth exponent, equal to 2 for non-conserved dynamics. More
precisely,

C(t, s) = M2
eq f (t/s) (3.1)

where the scaling function f is temperature independent. Furthermore, we have, for
x = t/s � 1, i.e. 1 � s � t ,

f (x) ≈ Ax−λ/z (3.2)

where λ is the autocorrelation exponent [26]. For the spherical model, equations (2.65)
and (2.67) match equations (3.1) and (3.2), with λ = D/2 and z = 2.

Consequently, we have

∂C(t, s)

∂s
≈ M2

eq

s
f1(x) (3.3)
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with f1(x) = −xf ′(x), so that, when x � 1,

f1(x) ≈ A1 x
−λ/z (3.4)

with A1 = Aλ/z.
Although the situation of the response R(t, s) is less clear-cut, it is, however, reasonable

to make the scaling assumption

R(t, s) ≈ s−1−a f2(x) (3.5)

where a > 0 is an unknown exponent and again with the behaviour

f2(x) ≈ A2 x
−λ/z (3.6)

when x � 1.
The scaling law (3.5) holds for the spherical model, with a = D/2 − 1, as can be

seen from equation (2.88). Furthermore, for non-conserved dynamics, at least in the case
of a discrete broken symmetry, like, for example, in the Ising model, it has been argued
[9, 27] that the integrated response ρ(t, s) (to be defined in equation (3.19)), scales as
ρ(t, s) ∼ L(s)−1 ϕ(L(t)/L(s)). This corresponds to equation (3.5) with a = 1/z = 1

2 .
The scaling laws (3.3) and (3.5) imply

X(t, s) ≈ s−a g(x) (3.7)

with g(x) = (T /M2
eq) f2(x)/f1(x), in agreement with equation (2.93) for the spherical model

and especially

X∞ = 0. (3.8)

3.2. Ageing at Tc

Let us now turn to the situation where a ferromagnetic system is quenched from a disordered
initial state to its critical point.

In such a circumstance, spatial correlations develop in the system, just as in the critical
state, but only over a length scale which grows like t1/zc , where zc is the dynamic critical
exponent. For example, the equal-time correlation function has the scaling form

Cx(t) = |x|−2β/ν φ
(|x|/t1/zc

)
(3.9)

where β and ν are the usual static critical exponents. The scaling function φ(x) goes to a
constant for x → 0, while it falls off exponentially to zero for x → ∞, i.e. on scales smaller
than t1/zc the system looks critical, while on larger scales it is disordered. This behaviour is
illustrated in the case of the spherical model by equation (2.51), corresponding to 2β/ν = D−2
and zc = 2 in equation (3.9).

In the scaling region of the two-time plane, where both times s and t are large and
comparable (1 � s ∼ t), with arbitrary ratio x = t/s, the two-time autocorrelation function
C(t, s) obeys a scaling law of the form

C(t, s) ≈ s−2β/νzc F(x). (3.10)

Furthermore, when both time scales are well separated (1 � s � t , i.e. x � 1), the scaling
function F(x) falls off as

F(x) ≈ B x−λc/zc (3.11)
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where λc is the critical autocorrelation exponent [14], related to the (magnetization) initial-
slip critical exponent �c [12, 15] by λc = D − zc�c. The results (3.10) and (3.11) seem to
have been first established in [12], for model A, by field-theoretical methods. The power law
entering equation (3.10) can be justified by an elementary reasoning (see the discussion below
equation (2.72)).

Equations (3.10) and (3.11) imply

∂C(t, s)

∂s
≈ s−1−2β/νzc F1(x) (3.12)

with F1(x) = −(2β/νzc)F (x)− xF ′(x), so that, when x � 1,

F1(x) ≈ B1 x
−λc/zc (3.13)

with

B1 = νλc − 2β

νzc
B. (3.14)

Similarly, the two-time response function R(t, s) obeys a scaling law of the form

R(t, s) ≈ 1

Tc
s−1−2β/νzc F2(x) (3.15)

with, when x � 1,

F2(x) ≈ B2 x
−λc/zc (3.16)

(see [12] for a derivation in the case of model A).
For the spherical model, equations (2.71), (2.73), (2.74), (2.89) and (2.91) match

equations (3.10)–(3.12), (3.15) and (3.16), with λc = 3D/2 − 2 if D < 4 and λc = D if
D > 4 (see table 1).

The scaling laws (3.12) and (3.15) imply that the fluctuation–dissipation ratio only depends
on the time ratio x throughout the scaling region:

X(t, s) ≈ X (x) = F2(x)

F1(x)
(3.17)

where the scaling function X (x) is universal. Indeed, it appears as a dimensionless combination
of scaling functions. Furthermore, equations (3.13) and (3.16) imply that the limit fluctuation–
dissipation ratio reads as

X∞ = X (∞) = B2

B1
. (3.18)

This number thus appears as a dimensionless amplitude ratio, in the usual sense of critical
phenomena. It is therefore a novel universal quantity of non-equilibrium critical dynamics, as
already claimed in [16].

In the case of the spherical model, the analytical treatment of section 2 corroborates the
above analysis and yields the quantitative predictions (2.96) and (2.99).

In order to perform a numerical evaluation of X∞, one needs to measure the response. A
convenient way to do so is to measure instead the dimensionless integrated response function

ρ(t, s) = T

∫ s

0
R(t, u) du. (3.19)
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By equation (2.79), this quantity is proportional to the thermoremanent magnetization MTRM,
i.e. the magnetization of the system at time t obtained after applying a small magnetic field h,
which is uniform and constant, between t = 0 and s:

MTRM(t, s) ≈ h

T
ρ(t, s). (3.20)

The thermoremanent magnetization is a natural quantity to measure experimentally in spin
glasses [3] and it is also accessible to numerical simulations, for systems with and without
quenched randomness (see section 3.3).

The scaling law (3.15) for the response function implies

ρ(t, s) ≈ s−2β/νzc F3(x) (3.21)

with F2(x) = −(2β/νzc)F3(x)− xF ′
3(x), so that, when x � 1,

F3(x) ≈ B3 x
−λc/zc (3.22)

with

B3 = νzc

νλc − 2β
B2. (3.23)

A clear representation of the evolution of X(t, s) in time is provided by the parametric
plot of ρ(t, s) against C(t, s), obtained by varying t at fixed s [7–9]. For well separated times
in the scaling regime (i.e. 1 � s � t), the common power-law behaviour (3.11), (3.13), (3.16)
and (3.22) implies that the limit fluctuation–dissipation ratio has the alternative expression

X∞ = B3

B
(3.24)

which is equivalent to equation (3.18), due to equations (3.14) and (3.23). In other words, the
relationship (1.2) also holds in integral form, that is

ρ(t, s) ≈ X∞ C(t, s) (3.25)

in the regime 1 � s � t . The limit fluctuation–dissipation ratio can thus be measured as
the slope of the parametric plot in the scaling region, i.e. near the origin of the C–ρ-plane.
Equation (3.25) is expected to hold as long as C and ρ are much smaller than the crossover
scale

C∗(s) = C(2s, s) ∼ s−2β/νzc (3.26)

corresponding to τ = s. This quantity provides a measure of the size of the critical region,
thus giving a quantitative definition of the critical analogue ofM2

eq, involved in the discussion
below equation (2.72).

3.3. The two-dimensional Ising model: numerical simulations

In order to check the validity of the scaling analysis made in the previous section, beyond the
case of the spherical model, we have performed numerical simulations on the ferromagnetic
Ising model on the square lattice, evolving under heat-bath (Glauber) dynamics at its critical
temperature Tc = 2/ ln(1 +

√
2) ≈ 2.2692, starting from a disordered initial state. The rules

of the dynamics are as follows. Consider a finite system, consisting ofN = L2 spins σx = ±1
situated at the vertices x of a square lattice, with periodic boundary conditions. The Ising
Hamiltonian reads

H = −
∑
(x,y)

σxσy (3.27)
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where the sum runs over pairs of neighbouring sites. Heat-bath dynamics consists in updating
the spins σx(t) according to the stochastic rule

σx(t) →




+1 with probability
1 + tanh(hx(t)/Tc)

2

−1 with probability
1 − tanh(hx(t)/Tc)

2

(3.28)

where the local field hx(t) acting on σx(t) reads

hx(t) =
∑
y(x)

σy(t) (3.29)

with y(x) denoting the four neighbours of site x.
Let us give a brief summary of known facts on the dynamics of the Ising model. For

T < Tc, numerical studies have shown that the scaling forms (3.1) and (3.2) hold, with z = 2
(non-conserved dynamics) and λ ≈ 1.25 [26]. The integrated response function (in another
form, known as the ZFC magnetization) has been measured in [8]. At T = Tc, the dynamic
critical exponent reads zc ≈ 2.17 [28] and the autocorrelation exponent λc ≈ 1.59 [14, 15, 29].

Our aim is now to check the validity of the scaling laws (3.10) and (3.15) (or (3.21)) and
to demonstrate the existence of a non-trivial limit X∞.

Computing C(t, s) with good statistics is rather easy, while the computation of ρ(t, s)
requires more effort. We have followed the lines of the method introduced in [8]. In order
to isolate the diagonal component of the response function, a quenched, spatially random
magnetic field, is applied to the system from t = 0 to s. This magnetic field is of the
form Hx = h0εx, with a constant small amplitude h0, and a quenched random modulation,
εx = ±1 with equal probability, independently at each site x. The heat-bath dynamical rules
are modified by adding up the magnetic field Hx to the local field hx(t) of equation (3.29).
We then have

〈εxσx(t)〉 = h0

∫ s

0
R(t, u) du = h0

T
ρ(t, s) = MTRM(t, s) (3.30)

where the bar denotes an average with respect to the distribution of the modulation εx of the
magnetic field.

We have first checked the validity of the scaling laws (3.10) and (3.21). Figures 1
and 2, respectively, show log–log plots of the autocorrelation function C(t, s) and of the
corresponding integrated response function ρ(t, s), against the time ratio x = t/s, for several
values of the waiting time s. For each value of s, the simulations are run up to t/s = 10 and
data are averaged over at least 500 independent samples of size 300 × 300. For the response
function, the amplitude of the quenched magnetic field reads h0 = 0.05. Multiplying the data
by s2β/νzc , with 2β/νzc ≈ 0.115, gives good data collapse, thus producing a plot of the scaling
functions F(x) and F3(x). The data follow a power-law fall-off at large values of x, with a
slope in good agreement with the value −λc/zc ≈ −0.73, shown on the plots as a straight line.

As mentioned in the introduction, to the best of our knowledge, this paper provides the first
quantitative determination of the scaling functions F(x) and F3(x) of the two-time correlation
and response functions of the two-dimensional Ising model at criticality.

We then turned to an investigation of the parametric plot of these data in theC–ρ-plane. At
the qualitative level, this plot, shown in figure 3 for several values of the waiting time s, confirms
our expectations. The stationary regime (1 ∼ τ � s, i.e. roughly speaking, C > C∗(s)),
corresponds to the right-hand part of the plot. The symbols show the data for small integer
values of the time difference, τ = t−s = 0, . . . , 8, illustrating the fast decay of correlation and
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Figure 1. Log–log plot of the critical autocorrelation functionC(t, s) of the two-dimensional Ising
model versus the time ratio x = t/s, for several values of the waiting time s. Data are multiplied by
s2β/νzc , in order to demonstrate collapse into the scaling function F(x) of equation (3.10). Straight
line, exponent −λc/zc ≈ −0.73 of the fall-off at large x.

Figure 2. Log–log plot of the critical integrated response function ρ(t, s) of the two-dimensional
Ising model versus the time ratio x = t/s, for several values of the waiting time s. Data
are multiplied by s2β/νzc , in order to demonstrate collapse into the scaling function F3(x) of
equation (3.21). Straight line, exponent −λc/zc ≈ −0.73 of the fall-off at large x.

integrated response in the stationary regime. The rightmost points, corresponding to τ = 0,
i.e. C = C(s, s) = 1, are compatible with the scaling law 1 − ρ(s, s) ∼ C∗(s) ∼ s−2β/νzc .
The validity of the fluctuation–dissipation theorem is demonstrated by the unit slope of this
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Figure 3. Parametric plot of the integrated response ρ(t, s) versus the autocorrelation C(t, s),
using the data of figures 1 and 2. Symbols, data for integer time differences τ = t − s = 0, . . . , 8.
Full line, unit slope corresponding to the fluctuation–dissipation theorem in the stationary regime.
Broken line, limit slope X∞ = 0.26 (see text and figures 4 and 5).

part of the plot, shown as a full straight line. The ageing regime (1 � s ∼ t , i.e. roughly
speaking, C < C∗(s)), corresponds to the left-hand part of the plot. As expected, the data
cross over toward a non-trivial slope, equal to the limit fluctuation–dissipation ratio X∞. The
broken line shows the slope X∞ = 0.26, obtained by the analysis described below.

In order to obtain a quantitative prediction of the limit fluctuation–dissipation ratio X∞,
we have followed two approaches. Figure 4 depicts the local slope of the plot of figure 3, i.e.
the ratio ρ/C, against C, in the ageing regime. The data for the largest available waiting time
s = 200 have been discarded from the analysis because they appear as too noisy on that scale.
The data look pretty linear all over the range presented in the plot. This precocious scaling is
due to the fact that the exponent 2β/νzc ≈ 0.115 is small. Hence the size of the critical region,
given by the estimate (3.26), is very large, at least for waiting times s accessible to computer
simulations. We have, for example, C∗(100) = C(200, 100) ≈ 0.24. The straight lines show
a constrained least-squares fit of the three series of data, imposing a common intercept. The
value of this intercept yields the prediction X∞ ≈ 0.262.

We have also followed an alternative approach, aiming to subtract most of the deviations
of the ratio ρ/C with respect to its limit X∞ at C → 0. This can be done by incorporating
the known limit of the stationary regime, i.e. ρ ≈ 1 as C → 1, into a quadratic
phenomenological formula: ρ ≈ X∞C + (1 − X∞)C2. This formula can be rewritten as
X∞ ≈ (ρ − C2)/(C(1 − C)), suggesting one should plot (ρ − C2)/(C(1 − C)) against C,
instead of just the ratio ρ/C. This has been done in figure 5. As expected, the vertical scale has
been considerably enlarged. In return this procedure increases the statistical noise on the data
points. The straight lines again show a constrained least-squares fit, yielding X∞ ≈ 0.260.
We can conclude from this numerical analysis that we have

X∞ = 0.26 ± 0.01 (3.31)

for the ferromagnetic Ising model in two dimensions.
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Figure 4. Parametric plot of the ratio ρ/C versus C. Straight lines, constrained least-squares fit
with a common intercept, yielding X∞ ≈ 0.262.

Figure 5. Parametric plot of the combination (ρ − C2)/(C(1 − C)) against C. Straight lines,
constrained least-squares fit yielding X∞ ≈ 0.260.

4. Discussion

This paper deals with the dynamics of ferromagnetic spin systems quenched from infinite
temperature to their critical state, with emphasis on the fluctuation–dissipation ratio X(t, s)
associated with the two-time correlation and response functions. This study, exemplified by
the exact analysis of the spherical model in any dimensionD > 2 and by numerical simulations
on the two-dimensional Ising model, complements that of the Glauber–Ising chain, presented
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in a companion paper [16]. The main results obtained in this work can be summarized as
follows.

In such a non-equilibrium situation these systems are ageing, in the sense that their
correlation and response functions depend non-trivially on the waiting time s as well as on the
observation time t , whenever these two times are simultaneously large. The corresponding
scaling laws (see equations (3.10), (3.12), (3.15) and (3.21)), involve powers of s, related to the
static anomalous dimension of the magnetization and universal scaling functions of the ratio
x = t/s. In the regime of large time separations, i.e. 1 � s � t (or x � 1), these scaling
functions fall off algebraically with the common exponent λc/zc.

Our most salient results concern the fluctuation–dissipation ratio X(t, s), characterizing
the violation of the fluctuation–dissipation theorem. This quantity exhibits a universal scaling
form X (x) in the scaling region of the two-time plane. For well separated times in the ageing
regime, it assumes a limit valueX∞, which appears as an amplitude ratio (see equations (3.18)
and (3.24)). Therefore, as announced in [16], X∞ is a novel universal characteristic of critical
dynamics, which is intrinsically related to the non-equilibrium initial condition of a critical
quench from a disordered state.

The ferromagnetic models studied in this paper turn out to have values ofX∞ in the range

0 � X∞ � 1
2 . (4.1)

We have X∞ = 1 − 2/D if 2 < D < 4 and X∞ = 1
2 for D > 4, for the spherical model,

and X∞ ≈ 0.26 ± 0.01 for the two-dimensional Ising model. Preliminary simulations on the
three-dimensional Ising model yieldX∞ ≈ 0.40. The backgammon model, for whichX∞ = 1
[18, 19], thus belongs to another class of models.

The mean-field value

XMF
∞ = 1

2 (4.2)

obtained for the spherical model in dimensionD > 4, also holds for a variety of models which
are not mean-field-like, including the Glauber–Ising chain [16] and the two-dimensionalX–Y
model at zero temperature [4].

Finally, let us discuss a few open questions. It would be interesting to know whether
there is an analogue for the present case of the results found for models with discontinuous
spin-glass transitions, where the violation of the fluctuation–dissipation theorem is related to
the configurational entropy [30]. One would also like to know the status of the quantityX∞ for
non-equilibrium systems with quenched disorder, or for systems defined by dynamical rules
without detailed balance.

In principle, the limit fluctuation–dissipation ratio X∞ could be calculated by field-
theoretical renormalization-group methods, generalizing the computations done for universal
amplitude ratios in usual static critical phenomena [31], as series in either ε = 4 − D, or in
1/n for the n-component Heisenberg model, the spherical model corresponding to the n → ∞
limit. The dimensionless time ratio x = t/s, appearing in the two-time autocorrelation and
response functions and fluctuation–dissipation ratio, is a temporal analogue of aspect ratios,
which play an important role in static critical phenomena and finite-size scaling theory [32].
One may therefore wonder whether the latter and especially its latest developments involving
conformal and modular invariance, could be used in order to put constraints on non-equilibrium
critical dynamics. Generalized symmetry groups, such as those introduced in [33], may also
play a role in this issue.
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[28] Nightingale M P and Blöte H W J 1996 Phys. Rev. Lett. 76 4548
[29] Grassberger P 1995 Physica A 214 547

Grassberger P 1995 Physica A 217 227 (erratum)
[30] Franz S and Virasoro M A 2000 J. Phys. A: Math. Gen. 33 891
[31] Zinn-Justin J 1996 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press)
[32] Cardy J (ed) 1988 Finite-Size Scaling (Amsterdam: North-Holland)

Privman V (ed) 1990 Finite-Size Scaling and Numerical Simulation of Statistical Systems (Singapore: World
Scientific)

[33] Henkel M 1997 Phys. Rev. Lett. 78 1940


